A genetic screen for DNA double-strand break repair mutations in Drosophila.
نویسندگان
چکیده
The study of DNA double-strand break (DSB) repair has been greatly facilitated by the use of rare-cutting endonucleases, which induce a break precisely at their cut sites that can be strategically placed in the genome. We previously established such a system in Drosophila and showed that the yeast I-SceI enzyme cuts efficiently in Drosophila cells and those breaks are effectively repaired by conserved mechanisms. In this study, we determined the genetic requirements for the repair of this I-SceI-induced DSB in the germline. We show that Drosophila Rad51 and Rad54 are both required for homologous repair by gene conversion, but are dispensable for single-strand annealing repair. We provided evidence suggesting that Rad51 is more stringently required than Rad54 for intersister gene conversion. We uncovered a significant role of DNA ligase IV in nonhomologous end joining. We conducted a screen for candidate mutations affecting DSB repair and discovered novel mutations in genes that include mutagen sensitive 206, single-strand annealing reducer, and others. In addition, we demonstrated an intricate balance among different repair pathways in which the cell differentially utilizes repair mechanisms in response to both changes in the genomic environment surrounding the break and deficiencies in one or the other repair pathways.
منابع مشابه
Knockout targeting of the Drosophila nap1 gene and examination of DNA repair tracts in the recombination products.
We used ends-in gene targeting to generate knockout mutations of the nucleosome assembly protein 1 (Nap1) gene in Drosophila melanogaster. Three independent targeted null-knockout mutations were produced. No wild-type NAP1 protein could be detected in protein extracts. Homozygous Nap1(KO) knockout flies were either embryonic lethal or poorly viable adult escapers. Three additional targeted reco...
متن کاملRelationship of DNA double-strand breaks to synapsis in Drosophila.
The relationship between synaptonemal complex formation (synapsis) and double-strand break formation (recombination initiation) differs between organisms. Although double-strand break creation is required for normal synapsis in Saccharomyces cerevisiae and the mouse, it is not necessary for synapsis in Drosophila and Caenorhabditis elegans. To investigate the timing of and requirements for doub...
متن کاملCell-based assays for identification of novel double-strand break-inducing agents.
BACKGROUND We are developing cell-based assays to identify anticancer agents that are selectively toxic to cells with defined mutations. As a test, we used a three-stage strategy to screen compounds from the National Cancer Institute's repository for agents that are selectively toxic to double-strand break repair-deficient yeast cells. METHODS Compounds identified in the screen were further a...
متن کاملAnnealing of Complementary DNA Sequences During Double-Strand Break Repair in Drosophila Is Mediated by the Ortholog of SMARCAL1.
DNA double-strand breaks (DSBs) pose a serious threat to genomic integrity. If unrepaired, they can lead to chromosome fragmentation and cell death. If repaired incorrectly, they can cause mutations and chromosome rearrangements. DSBs are repaired using end-joining or homology-directed repair strategies, with the predominant form of homology-directed repair being synthesis-dependent strand anne...
متن کاملValproic Acid-Mediated Reduction of DNA Double-Strand Break Reparation Capacity of Irradiated MCF-7 Cells
Introduction H istone deacetylase inhibitors (HDIs), as radiation sensitizing agents, are considered as a novel class of anti-cancer factors, which are studied in various tumor cell-lines. Valproic acid (VPA) is an HDI, which is effectively used in the treatment of epilepsy, migraines, and some particular types of depression. In this study, we evaluated the effects of VPA and ionizing radiatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 177 1 شماره
صفحات -
تاریخ انتشار 2007